

Ultra-Small, Low-Power, Window Comparator in 4 UCSP and 5 SOT23

General Description

The MAX9065 is an ultra-small, low-power, window comparator ideal for a wide variety of portable electronics applications such as cell phones, portable media players, and notebooks that have extremely tight board space and power constraints. It comes in both a 4-bump UCSP[™] package with a 1mm x 1mm footprint (as small as two 0402 resistors) and a 5-pin SOT23 package.

The MAX9065 features a common-mode input range of -0.3V to +5.5V independent of supply voltage. The input current goes to zero when the MAX9065 is powered down (V_{CC} = 0). Additionally, the MAX9065 features high RF immunity.

The MAX9065 has a push-pull output and consumes only 1µA (max) supply current. The MAX9065 operates down to 1.0V over the extended -40°C to +85°C temperature range.

Cell Phones

Electronic Toys

Portable Media Players

Notebook Computers Portable Medical Devices

Applications

Features

- Tiny 1mm x 1mm 4-Bump UCSP Footprint = Two 0402 Resistors Also Available in 5-Pin SOT23 Package
- Ultra-Low Power Operating Current 1µA (max)
- -0.3V to +5.5V Input Voltage Range
- 1.0V to 5.5V Vcc Range
- 3.0V and 4.2V Trigger Points
- ♦ -40°C to +85°C Extended Temperature Range

Ordering Information

PART	PIN-PACKAGE	TOP MARK
MAX9065EBS+	4 UCSP	AGC
MAX9065EUK+	5 SOT23	AFFL

Note: All devices are specified over the extended -40°C to +85°C operating temperature range.

+Denotes a lead-free/RoHS-compliant package.

UCSP is a trademark of Maxim Integrated Products, Inc.

Maxim Integrated Products 1

GND

0.2V REF

VLOWER

VUPPER

_ 0.1μF

DUT 1/0

Vpp

MICRO

CONTROLLER

1 OV TO 5 5V

Д

Vcc

Typical Operating Circuit

махіли MAX9065

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Pin Configurations

S906XVW Cont Cont 4-E 5-F

ABSOLUTE MAXIMUM RATINGS

Vcc. IN to GND	-0.3V to +6V
OUT to GND	-0.3V to (V _{CC} + 0.3V)
Output Short-Circuit Current Duratio	n10s
Input Current into Any Terminal	±20mA
Continuous Power Dissipation	
4-Bump UCSP (derate 3.0mW/°C	above +70°C)238mW

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(V_{CC} = 3.3V, T_A = -40°C to +85°C. Typical values are at T_A = +25°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
DC CHARACTERISTICS							
		MAX9065EBS+ 4 UCSP	$T_A = +25^{\circ}C$	4.158	4.20	4.242	
Lipper Threshold Voltage			$-40^{\circ}C < T_A < +85^{\circ}C$	4.10		4.30	
opper miesnoid voltage	UIV	MAX9065EUK+	$T_A = +25^{\circ}C$	4.04	4.20	4.36	v
		5 SOT23	$-40^{\circ}C < T_A < +85^{\circ}C$	3.98		4.42	
		MAX9065EBS+ 4 UCSP	$T_A = +25^{\circ}C$	2.94	3.00	3.06	
Lower Threshold Voltage			$-40^{\circ}C < T_A < +85^{\circ}C$	2.92		3.08	V
Lower Threshold Voltage	LIV	MAX9065EUK+	$T_A = +25^{\circ}C$	2.88	3.00	3.12	
		5 SOT23	$-40^{\circ}C < T_A < +85^{\circ}C$	2.83		3.17	
Input Voltage Range	V _{IN}			-0.3		+5.5	V
Hysteresis	V _{HYS}	(Note 2)			±1.0		%
Resistor String Input Resistance	R _{IN}			5.8	11	17.7	MΩ
Input Shutdown Current	IIN_SHDN	$V_{CC} = 0, V_{IN} = 5.5V$			1	15	nA
	Vol	$I_{SINK} = 100 \mu A, V_{CC} = 1V, T_A = +25^{\circ}C$				0.2	V
Output Voltage Low		$I_{SINK} = 1.2 mA, V_{CC} = 3.3 V$				0.3	
		$I_{SINK} = 1.2mA, V_{CC} =$	= 5.5V			0.5	
Output Voltage High	Vон	$I_{\text{SOURCE}} = 25 \mu \text{A}, V_{\text{CO}}$	c = 1V, T _A = +25°C			V _{CC} - 0.2	
		ISOURCE = 0.3mA, V _{CC} = 3.3V				V _{CC} - 0.3	V
		ISOURCE = 0.75mA, \	/ _{CC} = 5.5V			V _{CC} - 0.5	
AC CHARACTERISTICS							
Propagation Delay	tpD	Overdrive = ± 100 mV	(Notes 3, 4)		25		μs
Fall Time	tF	C _L = 10pF			14		ns
Rise Time	t _R	C _L = 10pF			30		ns
POWER SUPPLY							
Supply Voltage	Vcc	Guaranteed by V _{OS} tests		1		5.5	V

ELECTRICAL CHARACTERISTICS (continued)

(V_{CC} = 3.3V, T_A = -40°C to +85°C. Typical values are at T_A = +25°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Curanhy Current	laa	$V_{CC} = 5.5V$		0.7	1.35	
Supply Current	ICC	$V_{CC} = 1.0V, T_A = +25^{\circ}C$		0.6	1.0	μΑ
Power-Supply Rejection Ratio	PSRR	$V_{CC} = 0.9V$ to 5.5V, $T_A = +25^{\circ}C$	40	53		dB
Power-Up Time	ton			3		ms

Note 1: All devices are 100% production tested at $T_A = +25^{\circ}C$. Temperature limits are guaranteed by design.

Note 2: Hysteresis is the input voltage difference between the two switching points.

Note 3: Overdrive is defined as the voltage above or below the average of the switching points.

Note 4: Guaranteed by ATE and/or bench characterization over temperature.

Typical Operating Characteristics

 $(V_{CC} = 3.3V, T_A = -40^{\circ}C$ to $+85^{\circ}C$. Typical values are at $T_A = +25^{\circ}C$, unless otherwise noted.)

MAX9065

M/X/W

4

Р	IN	NAME	EUNCTION		
SOT23	UCSP	NAIVIE	FUNCTION		
1	B1	VCC	External Supply Input. Bypass to ground with a 0.1µF bypass capacitor.		
2, 3	B2	GND	Ground		
4	A2	IN	Window Comparator Input		
5	A1	OUT	Push-Pull Output		

The MAX9065 is an extremely small window compara-

tor designed for compact, low-current applications, fea-

At the heart of the MAX9065 are two comparators, a

resistor-divider with a disconnect switch, a 200mV ref-

erence, digital logic circuitry, and an output stage (see

The digital logic circuitry and the output stage together

behave like an AND gate. The gate's inputs are the out-

puts of the two comparators. When either comparator's

output is low, the output asserts low. When both com-

When power is applied to V_{CC} , the n-channel FET at the bottom of the resistor-divider is turned on. The

resistor-divider provides two voltages, VUPPER and

VLOWER, for comparison with an internal 0.2V reference

voltage. When the input voltage exceeds 4.2V, VUPPER is greater than 0.2V, causing the output to assert low.

When the input voltage falls below 3.0V, VLOWER is less

parator's outputs are high, the output asserts high.

turing a supply current of less than 1µA (max).

the Typical Operating Circuit).

Pin Description

Detailed Description

Operation

Table 1. MAX9065 Operation

INPUT VOLTAGE	OUTPUT
$V_{IN} > 4.2V$	Low
$3.0V < V_{IN} < 4.2V$	High
V _{IN} < 3.0V	Low

than 0.2V, causing the output also to assert low. With the input voltage between 3.0V and 4.2V, the output asserts high, indicating that the input voltage is within the desired range. Table 1 summarizes the operation of the MAX9065.

When V_{CC} goes to 0V, the n-channel FET is turned off, eliminating the resistor-divider as a leakage path for current.

Applications

The MAX9065 is designed specifically to monitor the voltage on a single lithium battery. Keeping the voltage on a lithium battery within a tight range is important to prevent damage to the battery. Specifically, ensuring that the battery's voltage neither exceeds 4.2V nor falls below 3.0V lengthens the lifetime of the battery and avoids any hazardous battery conditions.

Hysteresis

There are four trip points for hysteresis. See Figure 1.

Power-Supply Considerations

Bypass V_{CC} with a 0.1μ F capacitor to ground.

Chip Information

PROCESS: BiCMOS

Figure 1. Hysteresis Trip Points

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
4 UCSP	B4-1	<u>21-0117</u>
5 SOT23	U5-2	<u>21-0057</u>

M/X/M

Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

M/X/W

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	7/08	Initial release	—
1	10/08	Removed future part reference from 5 SOT23 package	1

MAX9065

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____

© 2008 Maxim Integrated Products

MAXIM is a registered trademark of Maxim Integrated Products, Inc.

_____9